منابع مشابه
Pathway analysis of NAD+ metabolism.
NAD(+) is well known as a crucial cofactor in the redox balance of metabolism. Moreover, NAD(+) is degraded in ADP-ribosyl transfer reactions, which are important components of multitudinous signalling reactions. These include reactions linked to DNA repair and aging. In the present study, using the concept of EFMs (elementary flux modes), we established all of the potential routes in a network...
متن کاملMicrobial NAD metabolism: lessons from comparative genomics.
NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal ...
متن کاملNAD+ metabolism in health and disease.
Nicotinamide adenine dinucleotide (NAD(+)) is both a coenzyme for hydride-transfer enzymes and a substrate for NAD(+)-consuming enzymes, which include ADP-ribose transferases, poly(ADP-ribose) polymerases, cADP-ribose synthases and sirtuins. Recent results establish protective roles for NAD(+) that might be applicable therapeutically to prevent neurodegenerative conditions and to fight Candida ...
متن کاملNAD⁺ in aging, metabolism, and neurodegeneration.
Nicotinamide adenine dinucleotide (NAD(+)) is a coenzyme found in all living cells. It serves both as a critical coenzyme for enzymes that fuel reduction-oxidation reactions, carrying electrons from one reaction to another, and as a cosubstrate for other enzymes such as the sirtuins and poly(adenosine diphosphate-ribose) polymerases. Cellular NAD(+) concentrations change during aging, and modul...
متن کاملManipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels.
Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD(+)-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltransferase critical for the NAD(+) salvage pathway, increases Sir2-dependent silencing, stabilizes the rDNA locus, and extends yeast replicative life span by up to 60%. Bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical Journal
سال: 2011
ISSN: 0264-6021,1470-8728
DOI: 10.1042/bj20110320